Control Contraction Metrics on Finsler Manifolds
نویسندگان
چکیده
Control Contraction Metrics (CCMs) provide a nonlinear controller design involving an offline search for a Riemannian metric and an online search for a shortest path between the current and desired trajectories. In this paper, we generalize CCMs to Finsler geometry, allowing the use of nonRiemannian metrics. We provide open loop and sampled data controllers. The sampled data control construction presented here does not require real time computation of globally shortest paths, simplifying computation.
منابع مشابه
On Stretch curvature of Finsler manifolds
In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied. In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...
متن کاملSome Remarks on Finsler Manifolds with Constant Flag Curvature
This article is an exposition of four loosely related remarks on the geometry of Finsler manifolds with constant positive flag curvature. The first remark is that there is a canonical Kähler structure on the space of geodesics of such a manifold. The second remark is that there is a natural way to construct a (not necessarily complete) Finsler n-manifold of constant positive flag curvature out ...
متن کاملOn Negatively Curved Finsler Manifolds of Scalar Curvature
In this paper, we prove a global rigidity theorem for negatively curved Finsler metrics on a compact manifold of dimension n ≥ 3. We show that for such a Finsler manifold, if the flag curvature is a scalar function on the tangent bundle, then the Finsler metric is of Randers type. We also study the case when the Finsler metric is locally projectively flat.
متن کاملBlack Holes, Ellipsoids, and Nonlinear Waves in Pseudo–Finsler Spaces and Einstein Gravity
We model pseudo–Finsler geometries, with pseudo–Euclidean signatures of metrics, for two classes of four dimensional nonholonomic manifolds: a) tangent bundles with two dimensional base manifolds and b) pseudo–Riemannian/ Einstein manifolds. Such spacetimes are enabled with nonholonomic distributions and associated nonlinear connection structures and theirs metrics are solutions of the field eq...
متن کامل